一、动态连通性

图的节点是否连通的问题,用下面两个图很好表示:

img

A, B, C, D 都是连通的,FG 连通, FH 却不连通。

并查集的数据结构就是为了快速判断图中两个节点(子图)是否连通。并查集 Union-Find 算法主要实现这两个API

1
2
3
4
5
6
7
8
class UF {
    /* 将 p 和 q 连接 */
    public void union(int p, int q);
    /* 判断 p 和 q 是否连通 */
    public boolean connected(int p, int q);
    /* 返回图中有多少个连通分量 */
    public int count();
}

二、基本思路

注意我刚才把「模型」和具体的「数据结构」分开说,这么做是有原因的。因为我们使用森林(若干棵树)来表示图的动态连通性,用数组来具体实现这个森林。

怎么用森林来表示连通性呢?我们设定树的每个节点有一个指针指向其父节点,如果是根节点的话,这个指针指向自己。比如说刚才那幅 10 个节点的图,一开始的时候没有相互连通,就是这样:

img

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class UF {
    // 记录连通分量
    private int count;
    // 节点 x 的节点是 parent[x]
    private int[] parent;

    /* 构造函数,n 为图的节点总数 */
    public UF(int n) {
        // 一开始互不连通
        this.count = n;
        // 父节点指针初始指向自己
        parent = new int[n];
        for (int i = 0; i < n; i++)
            parent[i] = i;
    }

    /* 其他函数 */
}

如果某两个节点被连通,则让其中的(任意)一个节点的根节点接到另一个节点的根节点上

img

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public void union(int p, int q) {
    int rootP = find(p);
    int rootQ = find(q);
    if (rootP == rootQ)
        return;
    // 将两棵树合并为一棵
    parent[rootP] = rootQ;
    // parent[rootQ] = rootP 也一样
    count--; // 两个分量合二为一
}

/* 返回某个节点 x 的根节点 */
private int find(int x) {
    // 根节点的 parent[x] == x
    while (parent[x] != x)
        x = parent[x];
    return x;
}

/* 返回当前的连通分量个数 */
public int count() { 
    return count;
}

这样,如果节点 pq 连通的话,它们一定拥有相同的根节点

1
2
3
4
5
public boolean connected(int p, int q) {
    int rootP = find(p);
    int rootQ = find(q);
    return rootP == rootQ;
}

并查集的数据结构实现并不难,主要是记录节点的根节点,并用数组实现,但是目前还有很多优化的地方。

三、最终优化

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
class UF {
    // 连通分量个数
    private int count;
    // 存储一棵树
    private int[] parent;
    // 记录树的「重量」
    private int[] size;

    // n 为图中节点的个数
    public UF(int n) {
        this.count = n;
        parent = new int[n];
        size = new int[n];
        for (int i = 0; i < n; i++) {
            parent[i] = i;
            size[i] = 1;
        }
    }
    
    // 将节点 p 和节点 q 连通
    public void union(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        if (rootP == rootQ)
            return;
        
        // 小树接到大树下面,较平衡
        if (size[rootP] > size[rootQ]) {
            parent[rootQ] = rootP;
            size[rootP] += size[rootQ];
        } else {
            parent[rootP] = rootQ;
            size[rootQ] += size[rootP];
        }
        // 两个连通分量合并成一个连通分量
        count--;
    }

    // 判断节点 p 和节点 q 是否连通
    public boolean connected(int p, int q) {
        int rootP = find(p);
        int rootQ = find(q);
        return rootP == rootQ;
    }

    // 返回节点 x 的连通分量根节点
    private int find(int x) {
        while (parent[x] != x) {
            // 进行路径压缩
            parent[x] = parent[parent[x]];
            x = parent[x];
        }
        return x;
    }

    // 返回图中的连通分量个数
    public int count() {
        return count;
    }
}
  • 利用size 数组记录每棵树的节点个数,节点数少的合并到多的树上。
  • 改变find 函数,将树摊平。

四、应用

130. 被围绕的区域(中等)

990. 等式方程的可满足性(中等)

684. 冗余连接

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
    public int[] findRedundantConnection(int[][] edges) {
        int n = edges.length;
        UF uf = new UF(n);
        int[] res = null;
        for (int i = 0; i < n; i++) {
            int ai = edges[i][0], bi = edges[i][1];
            if (uf.connected(ai-1, bi-1)) {
                res = new int[]{ai, bi};
            }
            uf.union(ai-1, bi-1);
        }
        return res;
    }
}