一、Morris 遍历
一般二叉树遍历都需要 O(h) 的空间来保存上一层的信息。而Morris 遍历利用叶子节点的左右孩子来存后序节点从而实现 O(1) 的空间复杂度。
1. Morris 遍历细节
假设来到当前节点 cur, 开始时 cur 来到头节点位置。
(1) 如果cur.left == null
,保存 cur 的值, cur 向右移动cur = cur.right
(2) 如果cur.left != null
,找到左子树上最右的节点 mostRight:
a. 如果 mostRight 的右指针指向空mostRight.right == null
,那么将mostRight.right = cur
, 更新cur = cur.left
b.如果mostRight.right != null
,说明之前已经访问过,第二次来到这里,表明当前子树遍历完成,保存 cur 的值,更新 cur = cur.right
代码实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
public static void morris(TreeNode root) {
if (root == null) {
return;
}
TreeNode cur = root;
while (cur != null) {
if (cur.left == null) {
cur = cur.right;
} else {
TreeNode mostRight = cur.left;
while (mostRight.right != null && mostRight != cur) {
mostRight = mostRight.right;
}
if (mostRight.right == null) {
mostRight.right = cur;
cur = cur.left;
} else {
mostRight.right = null;
cur = cur.right;
}
}
}
}
|
二、先序遍历
- 只访问一次的节点,直接打印
- 访问两次的节点,第一次打印
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
public static void preorderTraversal(TreeNode root) {
if (root == null)
return;
TreeNode cur = root;
while (cur != null) {
if (cur.left == null) {
// System.out.println(cur.val);
cur = cur.right;
} else {
TreeNode mostRight = cur.left;
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
if (mostRight.right == null) {
// System.out.println(cur.val);
mostRight.right = cur;
cur = cur.left;
} else {
cur = cur.right;
mostRight.right = null;
}
}
}
}
|
三、中序遍历
- 只访问一次的节点,直接打印
- 访问两次的节点,第二次打印
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
public static void preorderTraversal(TreeNode root) {
if (root == null)
return;
TreeNode cur = root;
while (cur != null) {
if (cur.left == null) {
// System.out.println(cur.val);
cur = cur.right;
} else {
TreeNode mostRight = cur.left;
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
if (mostRight.right == null) {
mostRight.right = cur;
cur = cur.left;
} else {
// System.out.println(cur.val);
cur = cur.right;
mostRight.right = null;
}
}
}
}
|
四、后序遍历
- 访问两次的节点第二次访问时,逆序打印左树右边界
- 单独打印整棵树逆序的右边界
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
public static void printEdge(TreeNode head) {
TreeNode tail = reverseList(head);
TreeNode cur = tail;
while (cur != null) {
System.out.println(cur.val + " ");
cur = cur.right;
}
reverseList(tail);
}
public static TreeNode reversList(TreeNode head) {
if (head == null)
return null;
TreeNode pre = null;
TreeNode cur = head;
while (cur != null) {
TreeNode temp = cur.right;
cur.right = pre;
pre = cur;
cur = temp;
}
return pre;
}
public static void preorderTraversal(TreeNode root) {
if (root == null)
return;
TreeNode cur = root;
while (cur != null) {
if (cur.left == null) {
cur = cur.right;
} else {
TreeNode mostRight = cur.left;
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
if (mostRight.right == null) {
mostRight.right = cur;
cur = cur.left;
} else {
printEdge(cur.left);
cur = cur.right;
mostRight.right = null;
}
}
}
printEdge(root);
}
|